Abstract
This work investigated sucrose metabolism in C. saccharoperbutylacetonicum. Inactivation of sucrose catabolism operon resulted in 28.9% decrease in sucrose consumption and 44.1% decrease in ABE production with sucrose as sole carbon source. Interestingly, a large amount of colloid-like polysaccharides were generated in the mutant, which might be due to inefficient intracellular sucrose metabolism. Deletion of transcriptional repressor gene successfully alleviated CCR and enhanced ABE production by 24.7%. Additional overexpression of endogenous sucrose pathway further elevated sucrose consumption and enhanced ABE production by 17.2%, 45.7%, or 22.5% compared to wild type with sucrose, mixed sugars or sugarcane juice as substrate, respectively. The engineered strain could be a robust platform for efficient biofuel production from inexpensive sucrose-based carbon sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.