Abstract

High-strength press-hardened steels (PHSs) are characterized by a martensite structure of high strength and adequate ductility. Strengthening PHSs with high C contents is usually accompanied by a loss of ductility and toughness. To overcome this inherent strength–ductility trade-off dilemma, we propose a novel strategy to achieve outstanding mechanical performance by introducing stable high-density Cr-rich cementite, which refines the martensite structure via Zenner pinning effect in a novel 2000 MPa grade PHS. Specifically, a high tensile strength of 2085 MPa with an appreciable total elongation of 10.1% is achieved in the novel PHS, which is far superior to commercial 22MnB5 steel (1519 MPa and 10%). The strength increase is predominantly induced by a high density of dislocations and cementite in the novel PHS, while the good ductility is attributed to the refined martensite structure coordinating plastic deformation and the enhanced work-hardening ability and dislocation storage capability mediated by massive cementite. The work can lay foundations for designing high-strength PHSs with good ductility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.