Abstract
Since about 70% of commercial biopharmaceutical products have been produced in Chinese hamster ovary (CHO) cells, this cell line is undeniably a workhorse for biopharmaceuticals production. Meanwhile, sialic acid terminals were reported to affect anti-inflammatory activity, antibody-dependent cellular cytotoxicity efficacy of IgG antibodies. Taking these findings together, we aimed to establish CHO cell lines that highly produce sialic acid terminals by overexpressing two N-acetylneuraminic acid-based key enzymes, α(2,6)-sialyltransferase and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase using dihydrofolate reductase/methotrexate gene amplification method. Indeed, the number of total sialic acid terminal glycan structures increased tremendously, by 12-fold compared to the wild type in total protein extracts. With the methotrexate supplementation, a targeted cell line, CHOmt17-100, showed up to 1.4 times more sialylated structures of glycoforms in total proteins. Interestingly, immunoglobulin G, used as the model protein in CHOmt17-100, showed about 53% sialylated structures in its glycoforms. These resultant sialylated glycans exhibited more than approximately 14.5 times increase as compared to that of the wild type. Moreover, the resultant glycan structures mostly had N-acetylneuraminic acid terminals, while N-glycolylneuraminic acid terminal composition remained less than 5% as compared to the wild type. Engineered antibodies derived from CHO cell lines that produce high levels of sialic acid will contribute to the examination of glycoforms' efficacy and usefulness toward bio-better products.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.