Abstract

Chinese hamster ovary (CHO) cell lines represent the most commonly used mammalian expression system for the production of therapeutic proteins. In this context, detailed knowledge of the CHO cell transcriptome might help to improve biotechnological processes conducted by specific cell lines. Nevertheless, very few assembled cDNA sequences of CHO cells were publicly released until recently, which puts a severe limitation on biotechnological research. Two extended annotation systems and web-based tools, one for browsing eukaryotic genomes (GenDBE) and one for viewing eukaryotic transcriptomes (SAMS), were established as the first step towards a publicly usable CHO cell genome/transcriptome analysis platform. This is complemented by the development of a new strategy to assemble the ca. 100 million reads, sequenced from a broad range of diverse transcripts, to a high quality CHO cell transcript set. The cDNA libraries were constructed from different CHO cell lines grown under various culture conditions and sequenced using Roche/454 and Illumina sequencing technologies in addition to sequencing reads from a previous study. Two pipelines to extend and improve the CHO cell line transcripts were established. First, de novo assemblies were carried out with the Trinity and Oases assemblers, using varying k-mer sizes. The resulting contigs were screened for potential CDS using ESTScan. Redundant contigs were filtered out using cd-hit-est. The remaining CDS contigs were re-assembled with CAP3. Second, a reference-based assembly with the TopHat/Cufflinks pipeline was performed, using the recently published draft genome sequence of CHO-K1 as reference. Additionally, the de novo contigs were mapped to the reference genome using GMAP and merged with the Cufflinks assembly using the cuffmerge software. With this approach 28,874 transcripts located on 16,492 gene loci could be assembled. Combining the results of both approaches, 65,561 transcripts were identified for CHO cell lines, which could be clustered by sequence identity into 17,598 gene clusters.

Highlights

  • The Chinese hamster, Cricetulus griseus, was introduced as a laboratory animal in 1919 [1]

  • In order to extend and improve this transcript set, next-generation sequencing (NGS) technologies from Roche/ 454 and Illumina were applied to sequence normalized cDNA libraries constructed from Chinese hamster ovary (CHO)-K1 mRNA samples

  • CHO-K1 cells were cultured in four independent fermenters, one exposed to temperature stress and one exposed to pH-shift to include a broad range of diverse transcripts

Read more

Summary

Introduction

The Chinese hamster, Cricetulus griseus, was introduced as a laboratory animal in 1919 [1]. Transcriptome analyses for example by applying DNA microarrays were not available to a broad scientific community, despite the importance of CHO cells for research and biotechnology. Previous attempts to analyze the transcriptome of CHO cells, relied on cross species hybridizations with microarrays designed for the closely related species mouse or rat, putting up with disadvantages such as decreased sensitivities [5] [6] [7]. To overcome these limitations, genome and transcriptome sequencing is a valuable tool in modern research and biotechnology. While sequencing projects have mainly been Sanger-based in the past, next-generation sequencing (NGS) technologies represent a time and cost efficient alternative today [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call