Abstract

The postsynthetic oxidation (PSO) of metal nodes in metal-organic frameworks (MOFs) has received widespread attention because PSO can significantly improve the performance of materials without changing the framework. This study investigates the influence of PSO on the proton conductivity of MOFs. The PSO product {[FeIII3L2(H2O)6]•3(OH)}n (2) is obtained by oxidizing {[FeII3L2(H2O)6]•3H2O}n (1) with Cu(NO3)2. At 98% RH and 70 °C, the proton conductivity of 2 is 66 times higher than that of 1, indicating that PSO can promote proton conduction. In the PSO process, metal ions shuttle in the MOF framework to functionalize the pores, and the change in the guest molecule forms more host-guest collaborative hydrogen bonds. All of these have made a significant contribution to proton conduction. Because 2 exhibits high proton conductivity (2.66 × 10-4 S·cm-1) at 98% RH and 80 °C, we doped 2 into a highly economical poly(vinylidene fluoride) (PVDF)/polyvinylpyrrolidone (PVP) substrate to make a hybrid membrane. The resulting hybrid membrane exhibits a high proton conductivity of 1.77 × 10-3 S·cm-1 at 98% RH and 80 °C, which is 4 times higher than the proton conductivity of the PVDF/PVP membrane and 6.6 times higher than that of 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.