Abstract

Polyimide/silica hybrid nanocomposites were prepared by sol–gel method without coupling agent. A novel diamine with a benzimidazole group, 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (PABZ), was introduced to copolymerize with 4,4'‐oxydianiline (ODA) and pyromellitic dianhydride (PMDA) to synthesize polyimide (PI) matrix. The compatibility between PI and silica was improved by hydrogen bonds formed between silica phase and the –NH– group on benzimidazole of the new diamine. Highly transparent hybrid films were obtained when silica content reached as high as 30 wt%. SEM results show that silica particles with sizes much smaller than that in PMDA‐ODA/silica system disperse homogeneously in the PI matrix. Differing from most hybrid systems without coupling agent, the tensile strength of PABZ system increases from 152 MPa to 165 MPa with silica content increasing from 0 to 20 wt%, while, it decreases linearly in PMDA‐ODA system. DMA analysis shows that the introduction of PABZ largely increases the glass transition temperature (Tg) for all silica contents, which is suggested to be due to the more rigid structures and stronger interaction between the two phases. Meanwhile, the decomposition temperature and char yields at 800 °C are both higher than that of pure PIs. The structures of the hybrid films were identified by FTIR spectra, which indicate that different silica morphologies are developed, resulted from the hydrogen bonds between benzimidazole and silica phase. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.