Abstract
This work presents design, fabrication and optimization of methanol concentration and flow channel cross-sectional geometry for enhanced power output in passive micro-direct methanol fuel cells. Passive micro-direct methanol fuel cells are fabricated with flow channels in silicon having both rectangular and trapezoidal cross-sectional geometry for flow of methanol at anode and air at cathode using microelectromechanical systems (MEMS) fabrication technique. The experiments are conducted at 25 °C by feeding methanol with a flow rate of 25 μl min−1 and supply of air at cathode by air-breathing method. Results show a peak in open circuit voltage and power density at 7 M methanol concentration for passive micro-direct methanol fuel cells having both rectangular and trapezoidal cross-sectional geometry. A study of influence of silicon flow channel cross-sectional geometry on passive micro-direct methanol fuel cell performance shows for the first time that the flow channels with trapezoidal cross-section enhance the power density (6.64 mW cm−2) nearly by a factor of two compared to that of flow channels with rectangular cross-section (3.9 mW cm−2) at 7 M methanol concentration. We believe that, though our results of significant enhancement of power density with trapezoidal fuel flow channels are obtained with micro-direct methanol fuel cells as a platform, they should also be applicable to other proton exchange membrane fuel cells with ethanol or humidified hydrogen as fuel.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have