Abstract

To investigate the effect of graphene oxide (GO) modified by polymerized ionic liquid (PIL) on the crystallization and dielectric relaxation of poly(vinylidene fluoride) (PVDF), a series of PVDF composites have been prepared using the solution casting method. The ion-dipole interaction between PIL and >CF2 and the π-dipole interaction between GO and >CF2 can induce synergistically the polar phase, and the π-ion interaction between GO and PIL can strengthen the induction effect of the polar phase and decrease the degree of crystallization of PVDF. The electric modulus and conductivity relaxation are employed to analyze the experimental complex dielectric permittivity. In the frequency spectra of complex permittivity of PVDF composites, space charge polarization and conductivity lead to a large value of dielectric permittivity. The temperature dependence of relaxation time of conductivity relaxation accords with the Arrhenius equation. A low degree of crystallization, more ion concentration, and polar phase in PVDF/PIL/GO enhance the movement of the polymer chain segment and charge carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call