Abstract
The working fluids with higher solar thermal conversion performance within broadband spectrum ranges are of great concern for direct absorption solar collectors (DASCs). Both metal nanoparticles with localized surface plasmon resonance (LSPR) effects and carbon nanomaterials have unique spectral absorption behaviors and have shown better photothermal performance in DASCs. In this paper, we attempted to prepare composite nanofluids including plasmonic bimetallic alloy and carbon nanomaterials to realize enhanced solar absorption and photothermal conversion performance. By taking ZIF-8-derived nitrogen-doped graphitic polyhedrons (ZNGs) as carrier, plasmonic bimetallic Ag-Au alloy nanoparticles were loaded on them by an impregnation-reduction method successfully. Ag-Au/ZNGs ethylene glycol nanofluids showed significant broadband absorption in the visible and near-infrared spectrum range at a lower concentration. Comparing to ethylene glycol, the photothermal conversion effeiency of all ZNGs nanofluids increased remarkablely. Plasmonic bimetallic Ag-Au alloy nanoparticles further improved the photothermal conversion efficiency, which was up to 74.35% for Ag-Au ZNGs nanofluids compared with 72.41%, 70.35% for Au/ZNGs, Ag/ZNGs respectively. This work presents a new way to enhance solar energy absorption and improve solar thermal conversion efficiency of nanofluids for DASCs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have