Abstract

We transferred AlGaN/GaN high-electron-mobility transistors (HEMTs) from a sapphire substrate to a copper plate using the hexagonal boron nitride epitaxial lift-off technique. After transfer, the negative slope in the drain current Id decreased owing to the suppression of the self-heating effect. The significant increase in Id and the negative shift of threshold voltage indicate an increase in two-dimensional electron gas (2DEG) density. The increase in 2DEG density is at least partially caused by the reduction in compressive stress in the GaN layer after the transfer, which is revealed from the E2 peak shifts of −1.3 cm−1 in Raman spectroscopy measurements. We also estimated the temperature in the active region of HEMTs by micro-Raman spectroscopy. For the transferred HEMT, the temperature at the gate edge on the drain side was 100 °C at a power dissipation of 0.9 W. In contrast, the temperature reached 240 °C at a power dissipation of only 0.7 W for the HEMT on the sapphire substrate. This indicates that the transfer technique can enhance the performance of AlGaN/GaN HEMTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call