Abstract

Point defects in 2D materials block in-plane charge transport, which incurs negative effects on the photoresponse of 2D monolayer materials. In contrast to in-plane charge transport, we show that out-of-plane charge transport in 2D materials can be enhanced through controllable formation of point defects, thus enhancing the photoresponse of a vertical heterostructure. Graphene and WSe2 monolayers were stacked together to construct a vertical heterostructure (W/G). Se point defects were artificially formed on the top atomic layer of WSe2 with controllable density via Ga ion irradiation. The interlayer charge transport in the W/G heterostructure was detected with femtosecond optical probe-pump measurements and photoelectric detection. Our experiments show that point defects can be used to provide higher transfer rate for out-of-plane charge transport and more electronic states for photoexcitation, leading to enhanced photoinduced interlayer charge transfer from WSe2 to graphene. Based on this feature, a photodetector based on W/G modified by point defects is proposed and implemented, exhibiting a fast photoresponsivity (∼0.6 ms) (2 orders of magnitude larger than the photoresponse in pristine W/G). This work demonstrates that out-of-plane charge transport is enhanced by the presence of point defects and illustrates an efficient method to optimize the performance of photoelectric devices based on vertical heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call