Abstract

The algae-bacteria symbiosis system (ABS) is used to effectively solve the problems of low carbon/nitrogen (C/N) ratio, low biodegradability and high ammonia toxicity in swine digestion effluent. This study examined the effects of the concentration and type of carbon source on ABS in the pollutants removal especially ammonia. When C/N ratio was 30:1 and carbon source was sodium acetate, the ABS was most conducive to the removal of nitrogen, phosphorus and COD, and to the accumulation of biomass and lipids. To make the wastewater discharge meet the relevant standard, the ABS + mono-cultivation of algae reprocessing system (MAS), was applied to actual swine digestion effluent. Through adjusting the C/N ratio in ABS to 30:1, the biomass concentration was 2.06 times higher than that of raw wastewater, and the removal efficiencies of NH4+-N, TN, TP and COD increased by 1.43, 1.46, 1.95 and 1.28 times, respectively. The final concentrations of NH4+-N, TN, TP and COD after the treatment of ABS (C/N ratio of 30:1) + MAS, were 16.98 ± 1.07 mg L−1, 18.72 ± 1.81 mg L−1, 0.48 ± 0.01 mg L−1 and 263.49 ± 11.89 mg L−1, respectively, reached the Chinese discharge standards for livestock and poultry wastewater. Bacterial community analysis showed that the dominant species of the ABS (C/N ratio of 30:1) was Corynebacterium (genus level). This study revealed that adjusting the concentration and type of carbon source was helpful to the nutrient cycling and resource utilization of ABS, indicating a feasible technique for treating high ammonia nitrogen digestate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call