Abstract

Leaching copper from waste printed circuit boards (WPCBs) by hydrometallurgy has always been a hot research topic. At atmospheric pressure, hydrogen peroxide (H2O2) was used as an oxidant to study the leaching behavior of copper from WPCBs in sulfuric acid (H2SO4) solution with ethylene glycol (EG). To elucidate the leaching mechanism of copper from WPCBs, the effect of various parameters on the leaching performance with or without EG was investigated. The results showed that the copper leaching process from WPCBs in the presence of EG was found to conform to the ash diffusion-controlled shrinking core model according to the kinetic curve and a activation energy of 18.38 kJ/mol. Moreover, the presence of EG strengthened the stability of H2O2, improved dispersity and increased electrical activity of WPCBs, which enhanced the leaching of copper from WPCBs in the high leaching temperature (>323.15 K). As a result, apart from the fact that the optimal leaching concentration of H2O2 was reduced by the addition of EG, the improved copper leaching efficiency from WPCBs was achieved by the addition of EG, as demonstrated by a maximum copper leaching efficiency of 98.01% and a maximum loss rate of 29.68%. Besides, the mineralogical and morphological properties of leaching residue validated the leaching results. Based on this, our findings confirmed the enhanced leaching performance of copper from WPCBs by EG, which benefited for the efficient recovery of copper from WPCBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.