Abstract
We report on multi-resonance chirped distributed Bragg reflector (DBR) microcavities. These systems are employed to investigate the light-mater interaction with both intra- and inter-layer excitons of transition metal dichalcogenide (TMDC) bilayer heterostructures. The chirped DBRs consisting of SiO2 and Si3N4 layers of gradually varying thickness exhibit a broad stopband with a width exceeding 600nm. Importantly, the structures provide multiple resonances across a broad spectral range, which can be matched to resonances of the embedded TMDC heterostructures. Studying cavity-coupled emission of both intra- and inter-layer excitons from an integrated WSe2/MoSe2 heterostructure in a chirped microcavity system, an enhanced interlayer exciton emission with a Purcell factor of 6.67 ± 1.02 at 4 K is observed. The cavity-enhanced emission of the interlayer exciton is used to investigate its temperature-dependent luminescence lifetime of 60ps at room temperature. The cavity system modestly suppresses intralayer exciton emission by intentional detuning, thereby promoting a higher IX population and enhancing cavity-coupled interlayer exciton emission. This approach provides an intriguing platform for future studies of energetically distant and confined excitons in different semiconducting materials, which paves the way for various applications such as microlasers and single-photon sources by enabling precise emission control and utilizing multimode resonance light-matter interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.