Abstract

Abstract This study is focused on the drop weight low-velocity impact (LVI) response of glass woven polymer composite laminates reinforced with multiwall carbon nanotubes (MWCNTs). Symmetrical quasi-isotropic laminates with zero bending-extension coupling were fabricated. Six hundred-grams per square meter plain glass woven fabric was used as a primary reinforcing agent while MWCNTs were used as the secondary reinforcement. The exceptional mechanical properties of MWCNTs in the context of impact damage tolerance in fiber-reinforced polymer composite laminates were examined and the limitation of scattered data was overcome by doing a range analysis. MWCNT-doped glass fiber reinforced polymer (GFRP) laminates were fabricated in seven proportions (neat, 0.25, 0.5, 0.75, 1, 1.5, and 2 weight percentage of resins) by using the hand layup technique, followed by the vacuum bagging method at 1 atm. By mixing MWCNTs as a secondary reinforcement, the maximum enhancement of 32.6 % in energy absorption, 10.26 % in peak load capacity (at 3.0 m/s impact velocity), and 32.44 % reduction in the visual damage area was attained (at 3.5 m/s indentation). Experiment results (for neat GFRP) were also validated by using three-dimensional finite element analysis software LS-DYNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.