Abstract

We show how quantum coherence effects can be used to improve the resolution and the contrast of diffraction-limited images imprinted onto a probe field. The narrow and sharp spectral features generated by double dark resonances (DDR) are exploited to control absorption, dispersion, and diffraction properties of the medium. The spatially modulated control field can produce inhomogeneous susceptibility of the medium that encodes the spatial feature of the control image to probe field in the presence of DDR. The transmission of a cloned image can be enhanced by the use of an incoherent pump field. We find that the feature size of the cloned image is four times smaller than the initial characteristic size of the control image even though the control image is completely distorted after propagation through a 3-cm-long Rb vapor cell. We further discuss how spatial optical switching is possible by using induced transparency and absorption of the medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call