Abstract

The generation of superoxide anion or hydroxyl radical derived from the organic selenium compounds selenomethionine, selenoethionine, selenocystine, selenocystamine and selenocysteine-glutathione selenenyl sulfide (CySeSG) was investigated by the electron spin resonance (ESR) technique with 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trapping agent. The intensity of ESR signals of DMPO-OOH adduct formed by the reaction of the hypoxanthine/xanthine oxidase reaction system with DMPO decreased in the presence of selenomethionine or selenoethionine. However, the decrease of this ESR signal intensity was not due to superoxide anion-scavenging ability of these selenium compounds. When selenomethionine or selenoethionine existed in the superoxide anion generating system at a higher concentration, a new ESR signal was recognized. This signal disappeared with the addition of a hydroxyl radical-scavenging reagent and was similar to the signal of DMPO-OH adduct. The lack of structural change in selenomethionine or selenoethionine following reaction with components of the superoxide anion generating system suggested that these selenium compounds act as a catalyst. Such a phenomenon was not observed in the superoxide anion generating system in the presence of selenocystine, selenocystamine or CySeSG. These findings suggested that coexistence of selenomethionine or selenoethionine under mammalian physiological conditions generating superoxide anion may possibly form a hydroxyl radical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call