Abstract

The formation of subsurface nm-size cavities in Si from He implantation followed by thermal anneal involves a complex interaction of He with vacancy clusters. We have attempted to promote cavity formation with vacancy-type defects arising from a hydrogen plasma treatment that is interposed between the implantation (40keV and 160keV He) and anneal (800°C-1h) steps. Cross-sectional transmission electron microscopy (XTEM) results show enhanced growth of He-induced cavities due to hydrogen in the 160keV He implanted sample, while no significant change is seen in the cavity spectrum for 40keV. In conjunction with Secondary Ion Mass Spectroscopy (SIMS) data, the results are tentatively interpreted in terms of the evolution of defects and hydrogen during annealing, their interactions with the He-cavities, and proximity of the layers to the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.