Abstract
Phytoremediation shows potential for remediating mine tailing sites contaminated with heavy metals. Our aim was to isolate, characterize, and assess the potential of endophytic bacteria to enhance growth and metal accumulation by the hyperaccumulator Alnus firma. A bacterial strain isolated from roots of Pinus sylvestris had the capacity to remove heavy metals from mine tailing and was identified as Bacillus thuringiensis GDB-1 based on 16S ribosomal DNA sequencing. GDB-1 exhibited plant growth-promoting traits, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, indole acetic acid (IAA) and siderophore production, and P solubilization. The efficiency of GDB-1 to remove heavy metals was influenced by pH and initial metal concentration. Removal capacity (mg/l) was 77% for Pb (100), 64% for Zn (50), 34% for As (50), 9% for Cd (10), 8% for Cu (10), and 8% for Ni (10) during the active growth cycle in heavy metal-amended, mine tailing extract medium. Inoculating soil with GDB-1 significantly increased biomass, chlorophyll content, nodule number, and heavy metal (As, Cu, Pb, Ni, and Zn) accumulation in A. firma seedlings. Results indicate that inoculating the native plant A. firma with B. thuringiensis GDB-1 improves its efficiency for phytoremediation of soil containing mine tailings contaminated with heavy metals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have