Abstract
This study aims to enhancement of heat transfer in double pipe heat exchanger by improving the thermal properties of base fluid which is water by adding AL2O3-Fe2O3 nanoparticles to the water. Al2O3-Fe2O3/water hybrid Nanofluid were examined experimentally and numerically at different flow rates ranging between (3 -7) Lpm at temperature of 25°C in an external tube while there was a hot water at a temperature of 60°C and a flow rate ranged between (3 – 5) Lpm running in the central tube of a double pipe counter heat exchanger. Also, the effect of various concentrations ranged between (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3%) of Al2O3-Fe2O3 nanoparticles dispersed in water on the rate of heat transfer, friction coefficient were verified experimentally and numerically . The ratio of Al2O3-Fe2O3 is 0.5:0.5. The experimental and numerical study indicated that with the rate of heat transfer increases when the concentration of suspended nanoparticles in the base fluid increases , but on the other hand, the skin friction coefficient and pressure drop increases as well with increasing the concentration of nanoparticles. The maximum enhancement in heat transfer for AL2O3-Fe2O3 is about 6 % . The results from the experimental study were largely consistent with the numerical results.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have