Abstract

Electro-peroxone (EP) is an emerging advanced oxidation process which combines electro-generation H2O2 and ozone for removing organic contaminants. In this paper, a platinum plate as anode, a method of electrochemical oxidation is adopted to modify graphite felt (GF) cathode to promote H2O2 yield and TOC removal from oxalic acid solution in EP process, its performance, mechanism and stability were discussed. Compared with original GF cathode, 2.6 times H2O2 yield can be achieved by the 5 min electrochemically modified GF (GF-5). The high electrochemical activity of the modified GF can be ascribed to introducing numerous surface oxygen-containing functional groups (OGs), which not only decreased the impedance, but also increased the amount of active site of O2 reduction. The production of H2O2 with GF-5 cathode improved with the increased initial pH, cathodic potential and O2 flow rate, while this promoting effect was not observed in GF cathode. Compared with GF cathode, TOC removal rate was improved by 21.5% with GF-5 cathode due to higher H2O2 yield in EP process. The primary pathway of TOC removal is electrochemically-driven peroxone process, and hydroxyl radical (·OH) is the dominant reactive species. Furthermore, GF-5 cathode had a good stability due to the protection of H2O2 and free electrons injected. The results indicate that the electrochemically modified GF severed as the cathode of EP processes has significant efficiency and stability in the removal of ozone-refractory organic contaminants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call