Abstract
It is very important to obtain a deeper understand of the carrier dynamics for indirect-bandgap multilayer MoS2 and to make further improvements to the luminescence efficiency. Herein, an anomalous luminescence behavior of multilayer MoS2 is reported, and its exciton emission is significantly enhanced at high temperatures. Temperature-dependent Raman studies and electronic structure calculations reveal that this experimental observation cannot be fully explained by a common mechanism of thermal-expansion-induced interlayer decoupling. Instead, a new model involving the intervalley transfer of thermally activated carriers from Λ/Γ point to K point is proposed to understand the high-temperature luminescence enhancement of multilayer MoS2 . Steady-state and transient-state fluorescence measurements show that both the lifetime and intensity of the exciton emission increase relatively to increasing temperature. These two experimental evidences, as well as a calculation of carrier population, provide strong support for the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.