Abstract

Silicon steel laminations are introduced as the back-plate to an electromagnetic acoustic transducer (EMAT) to increase the efficiency of the EMAT by increasing the magnitude of the EMAT coil's dynamic magnetic field and the eddy current in the sample surface. A two-dimensional, non-linear finite element model is developed to quantify the effectiveness of the back-plate’s different maximum permeability and saturation flux density, on increasing the eddy current density and the dynamic magnetic flux density in the specimen. A three-dimensional FE model is also developed, and confirms the expected result that the laminated structure of silicon steel (SiFe) markedly reduces the eddy current induced in the back-plate, when compared to a continuous slab of the steel. Experimental results show that silicon steel lamination can increase the efficiency of the EMAT in the cases both with and without a biasing magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call