Abstract

Holographic polymer-dispersed liquid crystal (HPDLC) films were fabricated with varying amounts of multiwalled carbon nanotubes (MWCNTs) to optimize the electro-optical performance of the HPDLC films. The MWCNTs were well dispersed in the prepolymer mixture up to 0.5 wt%, implying that polyurethane acrylate (PUA) oligomer chains wrap the MWCNTs along their length, resulting in high diffraction efficiency and good phase separation. The hardness and elastic modulus of the polymer matrix were enhanced with increasing amounts of MWCNTs because of the reinforcement effect of the MWCNTs with intrinsically good mechanical properties. The increased elasticity of the PUA matrix and the immiscibility between the matrix and the liquid crystals (LCs) gradually increased the diffraction efficiency of the HPDLC films. However, the diffraction efficiency of HPDLC films with more than 0.05 wt% MWCNTs was reduced, caused by poor phase separation between the matrix and LCs because of the high viscosity of the reactive mixture. HPDLC films showing a low driving voltage (<3 V µm−1), a fast response time (<10 ms) and a high diffraction efficiency (>75%) could be obtained with 0.05 wt% MWCNTs at 40 wt% LCs. Copyright © 2010 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call