Abstract

The level of safety and efficiency of technological processes operation largely depends on the qualifications of operating personnel. In continuous processes of such industries as chemical, mining, processing, energy, etc., it is common practice to use computer simulators to master the skills of making the right decisions in emergency conditions or ability to choose an efficient mode of operation. With the aim of controlling the safety level of work, it is required to have an opportunity to evaluate the efficiency of methods and learning outcomes. There is no single approach to learning outcomes using simulator trainings at energy-providing enterprises with continuous and technological processes. The main task of such enterprises is to train students with a set of knowledge and skills that will ensure the required level of safety and operational efficiency. This research proposes the technique for training, which includes the sequence of theoretical and practical exercises, metrics for automatic recording of students’ actions and criteria for assessing training efficiency. The authors have tested the proposed sequence of theoretical and practical exercises on the simulator on groups of engineering students. The results of the students’ execution of practical tasks on the simulator have been recorded using the proposed metrics. Based on the results the authors have proposed the criteria to assess students’ understanding of cause-and-effect relationships. The learning outcomes according to the technique and the proposed criteria have been verified with the help of blind test and the implementation of the final practical task on the simulator. The technique has been tested on different groups of students and it is obvious that due to the proposed metrics instructors are able to track the progress of learning. The research results can be applied at plants with continuous technological processes or in higher educational institutions. This practice-based approach to training can help to build the required set of knowledge and skills, which, in turn, will enhance the level of safety and operational efficiency. The engineering universities and enterprises of industry are currently implementing the proposed technique and computer simulator and it enables receiving feedback and updating of the technique for training operational personnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.