Abstract

Low voltage ride through (LVRT) is one of the most popular methods to protect doubly fed induction generator (DFIG) against balanced and unbalanced voltage dips. In this study, a novel LVRT capability strategy is enhanced using forcing demagnetization controller (FDC) in DFIG-based wind farm. Moreover, not only stator circuit but also rotor circuit were developed by electromotor force (EMF) for LVRT in DFIG-based wind farm. The transient stability performances of the DFIG with and without the FDC and EMF were compared for three- and two-phase faults. In addition to variations such as 34.5 kV bus voltage and terminal voltage of DFIG, speed of DFIG, electrical torque of DFIG and d-q axis rotor-stator current variations of DFIG were also evaluated. It was seen that the system became stable within a short time using the FDC and EMF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.