Abstract

Experiments were conducted to study the effect of ultrasonic vibrations on heat transfer during the rapid quenching of thin horizontal platinum wires in subcooled water and ethanol. The frequency of ultrasonic vibration was 24 and 44 kHz. The power input to the transducer P ranged from 0 to 280 W. The measured boiling curve had two minimum-heat-flux points; the first (named the MI point) corresponded to the onset of significant liquid–solid contact. For P ≤ 20 W, the wall superheat at the MI point increased considerably with increasing P. The heat flux was not much affected by the ultrasonic vibrations until the MI point was reached. After the MI point, the heat flux increased significantly with increasing P. The effect was more significant for υ = 24 kHz. Distributions of the sound pressure and the cavitation intensity were also measured and their effects on the heat transfer characteristics are discussed. © 1998 Scripta Technica. Heat Trans Jpn Res, 27(1): 16–30, 1998

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call