Abstract

AbstractEnhanced productivity toward propene oxide in the direct propene epoxidation with hydrogen and oxygen over gold nanoparticles supported on titanium‐grafted silica was achieved by adjusting the gold–titanium synergy. Highly isolated titanium sites were obtained by lowering the titanium loading grafted on silica. The tetrahedrally coordinated titanium sites were found to be favorable for attaining small gold nanoparticles and thus a high dispersion of gold. The improved productivity of propene oxide can be attributed to the increased amount of the interfacial AuTi sites. The active hydroperoxy intermediate is competitively consumed by epoxidation and hydrogenation at the AuTi interface. A higher propene concentration is favorable for a lower water formation rate and a higher formation rate of propene oxide. Propene hydrogenation, if occurring, can be switched off by a small amount of carbon monoxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call