Abstract
Primary photochemical reactions and the activities of the antioxidant enzymes chloroplastic superoxide dismutase (SOD), glutathione reductase (GR) and glutathione-S-transferase (GST) were determined in water-stressed pearl millet ( Pennisetum glaucum L. cv. HHB-67) plants sprayed with the thiol compounds dithiothreitol (DTT), thioglycolic acid (TGA) and thiourea (TU) and the thiol modifiers 5,5′-dithio-bis-2-nitrobenzoic acid (DTNB) and N-ethylmaleimide (NEM) at the earhead emergence stage (47 days after sowing, DAS), together with a control. Sampling was done at 54 and 67 days after sowing. Photosystem I and II (PS I and II) activities (ferricyanide site) were found to increase in plants sprayed with TU, TGA and DTT at both stages (54 and 67 DAS), but a reduction in PS II activity (DCQ Site) compared with the control was caused by NEM (66.66%) and DTNB (27.77%) at 54 DAS. A similar decrease in the activity of PS II (ferricyanide site) was found at 67 DAS for DTNB (55.55%). The chloroplastic SOD activity increased in chloroplasts isolated from leaves sprayed with thiol compounds at both sampling stages, except for NEM at 54 and 67 DAS. The activities of GR and GST in the leaves were higher in thiol-treated plants than in the control at 54 and 67 DAS, while the lowest GR activity was seen for the sulphydryl modifiers (DTNB and NEM) in leaves at 54 DAS. The experimental data suggest an enhancement in the primary photochemistry and antioxidant enzyme activities of water-stressed pearl millet in response to foliar spraying with thiol compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.