Abstract
Gallium nitride based high electron mobility transistors (HEMT) are powerful candidates for high frequency and high power applications. While switching applications demand normally-off operation, these devices are normally-on. Recent normally-off HEMTs were demonstrated by implanting fluorine above the channel, in the barrier layer. During implantation, fluorine ions penetrate into the channel and cause mobility degradation. In this paper, we propose and simulate an alternative approach in which fluorine ions are implanted below the channel of the HEMT rather than above it. The simulation tool ATLAS is calibrated using experimental data from a real HEMT device. Simulation results have shown that implanting fluorine ions below the channel is capable of achieving normally-off operation. When compared to the implantation in the barrier layer, the proposed approach offers better confinement for the two dimensional electron gas (2DEG) below the gate, eliminates the scattering of fluorine ions with channel electrons and is more efficient when it comes to the fluorine concentration required to achieve a desired threshold voltage. This technique neither affects the breakdown voltage nor the off-state current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.