Abstract

We report a strategy based on introduction of point defects for improving the thermoelectric properties of FeSb2, a promising candidate for low temperature applications. Introduction of Sb deficiency to the tune of 20% leads to enhancement in the values of electrical conductivity (σ) and Seebeck coefficient (S) accompanied with a concomitant suppression in lattice thermal conductivity (κlat) values in samples prepared using conventional solid state reaction route. These observations in polycrystalline FeSb2-x provides ample motivation for a dedicated exploration of thermoelectric behavior of the corresponding single crystalline as well as hot-pressed polycrystalline counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.