Abstract

Ternary PbBi2S4 compound with crustal S-rich element and low lattice thermal conductivity is considered as a potential thermoelectric candidate. However, its inferior thermoelectric properties are rooted in the low electrical transport performance. Generally, enhancing electrical transport performance (power factor, PF) primarily entails optimizing the interdependent relationship between carrier mobility μ (linked to electrical conductivity σ) and effective mass m* (related to Seebeck coefficient S). In this work, we introduce the strategy of alloy scattering to independently enhance S without weakening μ and simultaneously reduce thermal conductivity, leading to a synergetic optimization of electron and phonon in PbBi2S4 thermoelectric. Heavy Sn alloying in PbBi2S4 presents uniform and orderly distribution on Pb sites as unclosed by the atomic-scale crystal structure observation. These massive Sn atom serves as scattering centers and turns the electron scattering mechanism to be dominated by alloy scattering, thus resulting in a ∼ 33% increment of S in Pb0.6Sn0.4Bi2S4. Meanwhile, Sn alloying aggravates phonon scattering further lowering lattice thermal conductivity and reaching an extremely low value of 0.34 W·m–1·K–1 at 773 K. Finally, a maximum zT of 0.68 at 773 K is obtained in Pb0.6Sn0.4Bi2S4, which is ∼ 45% higher than the pristine matrix. This study proves that the strategy of alloy scattering is effective in improving overall electrical transport properties as well as reducing lattice thermal conductivity, which paves a new way to develop high-performance thermoelectric materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.