Abstract

In this work, we present a design that improves signals produced by nuclear magnetic resonance (NMR) and magnetic resonance imaging by using optical pumping and a high-Tc superconducting quantum interference device (SQUID) magnetometer. In our design for a NMR detection system, a pickup coil is coupled to the spin procession of a H3e nucleus; the input coil is coupled to a high-Tc SQUID magnetometer; and the capacitor is connected in series to form a tank circuit resonating at the Larmor frequency of the H3e nucleus in the measuring field. A signal-to-noise ratio gain of 2.67 over a conventional Faraday detection coil was obtained with the high-Tc SQUID detection system in a measuring magnetic field equaling 0.1128 mT, at which the central frequency was 3.66 kHz for H3e nucleus. The improvement in the NMR signal for large-size, hyperpolarized H3e coupled to a high-Tc SQUID-based spectrometer in low magnetic fields at room temperature is significant compared to that without flux coupling. This result may be of interest given its potential for use in a low field imager.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.