Abstract

With a 2.3-kW high-power diode laser, laser surface alloying of a commercially pure copper (cp Cu) with NiTi powder was carried out to attain higher corrosion and electrical wear resistances. Potentiodynamic polarization was conducted in simulated acid rain (SAR) at 25 °C for simulating the corrosive environment. In the SAR, corrosion potentials of all laser-alloyed samples are found to be nobler than those of cp Cu and NiTi alloy and their corrosion current densities are lower than that of cp Cu although their oxide layers are less uniform. Electrical wear tests were also carried out in both dry and wet conditions with a pin-on-disc tribometer. The electrical wear resistances of the laser-alloyed samples in wet condition are higher than in dry condition due to lubrication effect and reduction in frictional heat. The electrical wear resistances of all laser-alloyed samples were improved as compared with cp Cu owing to the presence of pseudo-plasticity of B19′ and hard IMPs, and work hardening effect during electrical wear. The contribution of electrical wear in SAR is mainly mechanical wear, and wear-corrosion synergism up to 36.1%, while corrosion is negligible. Compared with cp Cu, the interfacial contact resistance of the laser-alloyed samples at 50 N/cm 2 has increased from 3.5 to 7.2 times. • Pure copper is successfully laser-surface alloyed with NiTi powder • Compared to cp Cu, corrosion potentials of laser-alloyed samples are nobler and corrosion current densities are lower • Their electrical wear resistances are improved due to pseudo-plasticity of B19’, hard IMPs and work hardening effect • Contribution of electrical wear in SAR is mainly mechanical wear and wear-corrosion synergism up to 36.1% • Compared to cp Cu, interfacial contact resistance of laser-alloyed samples is increased from 3.5 to 7.2 times

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.