Abstract

The p-type conductivity of H-terminated diamond surface can be linked to adsorption of a specific gas species on the surface. O3, NO2, NO, and SO2 were identified as adsorbates, which induce holes on the H-terminated diamond surface. Among them, exposure to O3 increases hole concentration the most. The O3-increased concentration remains high even after exposure to the gas has stopped, indicating that ozone is the most stable adsorbent. X-ray photospectroscopy spectra of O3-adsorbed H-terminated diamond surface show partial oxidation of the surface and upward band bending and are very similar to those of NO2 exposed diamond surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.