Abstract

Charge build-up at the solid/aqueous interface is a ubiquitous phenomenon that determines the properties of interfacial electrical double layers. Due to its unique properties, the surface of diamond offers an attractive platform to investigate charging mechanisms in aqueous solutions. We investigate the surface charge by studying the ion sensitivity of H-terminated single crystalline diamond surface conductive layers. The effect of monovalent and divalent salts has been probed at different pH values. For a pH above 3.5, increasing the ionic strength results in a decrease of the surface conductivity, in contrast to the results obtained for pH below 3.5. Electrokinetic experiments are in good agreement with the surface conductivity measurements, showing an isoelectric point at pH 3.5 for the H-terminated diamond surface. We discuss the results in terms of the Coulombic screening by electrolyte ions of the surface potential, which is induced by a pH-dependent surface charge. The origin of this surface charge is discussed in terms of charge regulation by amphoteric hydroxyl surface groups and unsymmetrical adsorption of hydroxide and hydronium ions induced by the hydrophobic nature of the H-terminated diamond surface. This surface charge can have important consequences for processes governed by the diamond/aqueous interface, such as electron transfer to charged redox molecules, adsorption of charged molecules and proteins, and ion sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.