Abstract

This study aims to optimize surface electromyography-based gesture recognition technique, focusing on the impact of muscle fatigue on the recognition performance. An innovative real-time analysis algorithm is proposed in the paper, which can extract muscle fatigue features in real time and fuse them into the hand gesture recognition process. Based on self-collected data, this paper applies algorithms such as convolutional neural networks and long short-term memory networks to provide an in-depth analysis of the feature extraction method of muscle fatigue, and compares the impact of muscle fatigue features on the performance of surface electromyography-based gesture recognition tasks. The results show that by fusing the muscle fatigue features in real time, the algorithm proposed in this paper improves the accuracy of hand gesture recognition at different fatigue levels, and the average recognition accuracy for different subjects is also improved. In summary, the algorithm in this paper not only improves the adaptability and robustness of the hand gesture recognition system, but its research process can also provide new insights into the development of gesture recognition technology in the field of biomedical engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.