Abstract
<p>Conventionally, identifying phytoplankton species is challenging due to human taxonomical knowledge limitations. Advanced technology can overcome this problem. A novel model that accurately enhances phytoplankton detection and identification classification by combining asymmetric convolution and vision transformers (ACVIT) within the YOLOv8m framework is promoted with ACVIT-YOLO. The performance of this model surpasses the original YOLOv8m model, exhibiting a notable 2.4% enhancement in precision, 5.5% improvement in recall, and 1.1% gain in mAP 50 score. The enhanced effectiveness of ACVIT-YOLO compared to the YOLOv8m model, further demonstrated by the decreased giga floating-point operations (GFLOP), decreased parameter count, and compact dimensions, significantly improves the automation of phytoplankton species identification. This suggests that the ACVIT-YOLO model could produce a better prediction system for identifying phytoplankton with similar accuracy to the original YOLOv8m model but with lower computational power and resource usage.</p>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have