Abstract

The sensors with a wide gas pressure detection range are urgently demanded in many industrial applications. Here, we propose a gas pressure sensor based on an all-solid open Fabry-Pérot interferometer, which is prepared by using optical contact bonding to ensure high structural strength and high-quality factor of 8.8 × 105. The applied pressure induces a change in the refractive index of the air, leading to the shift of the resonant spectrum. The pressure is detected by calibrating this shift. The sensor exhibits a pressure sensitivity of 4.20 ± 0.01 nm/MPa in a pressure range of 0 to 10 MPa and has a minimum pressure resolution of 0.005 MPa. Additionally, it shows a lower temperature cross-sensitivity of -0.25 kPa/°C. These findings affirm that the sensor achieves high-sensitivity pressure sensing across a wide detection range. Moreover, owing to its exceptional mechanical strength, it holds great promise for applications in harsh environments, such as high temperature and high pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call