Abstract

Stringent Environmental standards followed worldwide led to the emergence of advanced oxidation process for the removal of toxic contaminants from water and wastewater. Among all semiconductor photocatalysts have great potential in the degradation of organic and inorganic pollutants into lesser harmful products under visible light irradiations. The present research work describes the synthesis of Cu doped ZnO (CuDZ) via a co-precipitation method to attain high crystallized powder confirmed by XRD analysis. The FE-SEM images showed that the CuDZ has cotton ball like morphology with a uniform size ranged from 25 to 40nm. TEM, FT-IR and UV-DRS studies of the synthesized CuDZ are also discussed in detail. The photocatalytic activity of the as prepared CuDZ catalyst was tested for the degradation of Direct Blue 71 (DB 71) dye in aqueous phase under visible light irradiation. The degree of degradation was found to be dependent on aqueous phase pH, duration of irradiation time, amount of photocatalyst, the initial dye concentration and kinetics of photodegradation. The maximum photocatytic degradation of DB 71 dye was found to be effective at pH 6.8. The optimum amount of photocatalyst was found 3gL−1 of CuDZ for the complete degradation of DB 71 dye (0.01gL−1). The reusability of the photocatalyst indicates that 96% of DB 71 dye was degraded up to 3rd cycles of use. The visible photodegradation of DB 71 dye was exhibited pseudo-first-order kinetics. Chemical oxygen demand and ESI-MS studies confirmed the complete mineralization of DB 71 dye molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.