Abstract

AbstractThe use of solar energy to convert CO2 into chemical fuels not only can create renewable energy but also can alleviate the greenhouse effect. In this work, MgO/LaFeO3 : Er3+ composites were prepared, and their photocatalytic CO2 reduction capability was tested under visible‐light irradiation. The MgO/LaFeO3 : Er3+ composites displayed improved charge carrier separation efficiency, higher CO2 adsorption capacity, and increased photoactivities for photocatalytic CO2 reduction to CO and CH4 (71.52 μmol g−1 h−1 and 5.54 μmol g−1 h−1, respectively). As a comparison, the production rates of CO and CH4 are 29.36 μmol g−1 h−1 (CO) and 4.13 μmol g−1 h−1, respectively for pure LaFeO3. The enhanced photoactivities are attributed to the increased electron‐hole separation rate resulting from the Er3+ doping and improved CO2 adsorption capacity by MgO coupling. This work thus identifies a novel approach towards highly efficient photocatalysts for CO2 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.