Abstract

Flexible ligand docking is a routine part of a modern structure-based lead discovery process. As of today, there are quite a number of commercial docking programs that can be used to screen large databases (hundreds of thousands to millions of compounds). However, limiting factors such as the number of commercial software licenses needed to perform docking simultaneously on multiple processors ("software cost") and the relatively long time required per molecule to get good results ("quality-to-speed") should be taken into account when planning a large docking run. How can we optimize the efficiency of selecting lead candidates by docking, in respect to the quality of the results, search speed, and software cost? We present a combination of two methods, our "fast-free-approximate" in-house docking program and the "slow-costly-accurate" ICM-Dock, as an example of one solution to the problem. Our proposed protocol is illustrated by a series of virtual screening experiments aimed at identifying active compounds in the MDL Drug Data Report database. In more than half of the 20 cases examined, at least several actives per protein target were identified in approximately 24 hours per target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.