Abstract
Abstract Achieving higher power output across a broader frequency spectrum presents a significant challenge for vibration energy harvesters aimed at powering low-powered devices from ambient sources. This study introduces the novel concept of employing inertial amplifiers to couple mistuned pendulum electromagnetic harvesters for enhanced energy harvesting performance. A mathematical model elucidating the inertial amplifier mechanism is developed, and analytical results are compared against conventional uncoupled harvesters. Experimental studies demonstrated up to 1.8 times higher power output and a 2-fold increase in operational frequency bandwidth compared to uncoupled harvesters when employing inertial amplifier coupling. The proposed inertially coupled harvester design offers a powerful solution to significantly improve energy transduction levels and extend the viable frequency range, enabling efficient scavenging of ambient vibrations for powering wireless sensors and low-power electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.