Abstract

We report on the KrF-laser ablation synthesis, purification and photocurrent generation properties of single-wall carbon nanotubes (SWCNTs). The thermally purified SWCNTs are integrated into hybrid photovoltaic (PV) devices by spin-coating them onto n-Si substrates. These novel SWCNTs/n-Si hybrid devices are shown to generate significant photocurrent (PC) over the entire 250–1050 nm light spectrum with external quantum efficiencies (EQE) reaching up to ∼23%. Our SWCNTs/n-Si hybrid devices are not only photoactive in the traditional spectral range of Si solar cells, but generate also significant PC in the UV domain (below 400 nm). This wider spectral response is believed to be the result of PC generation from both the SWCNTs themselves and the tremendous number of local p–n junctions created at the nanotubes/Si interface. To assess the prevalence of these two contributions, the EQE spectra and J–V characteristics of these hybrid devices were investigated in both planar and top-down configurations, as a function of SWCNTs’ film thickness. A sizable increase in EQE in the near UV with respect to the silicon is observed in both configurations, with a more pronounced UV photoresponse in the planar mode, confirming thereby the role of SWCNTs in the photogeneration process. The PC generation is found to reach its maximum for an optimal the SWCNT film thickness, which is shown to correspond to the best trade-off between lowest electrical resistance and highest optical transparency. Finally, by analyzing the J–V characteristics of our SWCNTs/n-Si devices with an equivalent circuit model, we were able to point out the contribution of the various electrical components involved in the photogeneration process. The SWCNTs-based devices demonstrated here open up the prospect for their use in highly effective photovoltaics and/or UV-light sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.