Abstract

Anodization by plasma electrolytic oxidation (PEO) and subsequent apatite coating were performed on a biodegradable AZ31 magnesium alloy to enhance its corrosion resistance and bioactivity in physiological solution. The PEO film itself (~48μm in thickness) exhibited low bioactivity, where only aggregated apatite particles were deposited locally on its surface as a result of the alternative immersion method (AIM) in Ca–phosphate solutions. The uniformity of apatite coating on the PEO film was markedly improved by pretreatment of the film in a dilute NaOH solution. The alkali treatment induced the formation of a nano-size platelet Mg(OH)2 layer on the film surfaces that drastically enlarged the effective surface area for the precipitation of apatite. A uniform apatite layer as thick as 1μm was successfully deposited on the hydroxide layer after AIM treatment. The enhanced uniformity of the apatite coating on an alkali- and AIM-treated surface significantly improved the corrosion resistance in both simulated body fluid (SBF) and NaCl solution, and the bioactivity in SBF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call