Abstract
AbstractDue to optical radiation losses, a high pumping threshold or low temperature is necessary for driving ultraviolet (UV) light emission devices, and surface/interface engineering method is one of the alternatives for tailoring photon behavior. Here, a fully integrated nanowire (NW) laser device is thus constructed, resulting in suppressed interface light loss. Enhanced UV spontaneous and lasing emission is observed due to adequate gain to compensate for the optical loss. Applying well‐aligned ZnO NW cavities, optimized UV spontaneous and lasing emission is realized, supporting an effective optical path through interface engineering for photon extraction. As proven by experimental results, through interface integration with Pt metal for ZnO NWs, 170% photoluminescence (PL) emission enhancement accompanied by 145% broaden emission spectra width in the UV region is obtained. It is also observed that more lasing modes appeare when excitation density is high enough, lasing modes interspacing of around 3 nm, and full width at half maximum of the modes <0.003 eV for the lasing device could be observed. The detailed optical simulation is proposed to understand the physical origin of internal mechanisms contributing to the optimized spontaneous and stimulated lasing emission behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.