Abstract

In order to reduce the fossil fuel usage, to meet huge energy demand and lessen air pollution, a green, clean and sustainable biofuel is the only alternative. Biodiesel production becomes cheaper when we use a cheap precursor, eco-friendly catalyst and a proper process. Pig tallow from the meat industry containing high fatty acid can be utilized as an effective precursor for biodiesel preparation. This study produced biodiesel from pig tallow oil via ultrasonic assisted and CuO catalysed two-step esterification process. Cinnamomum tamala (C. tamala) extract was utilized for CuO nanoparticles preparation and characterized using infra-red spectra, x-ray diffraction, particle size distribution, scanning and transmission electron microscopy. Biodiesel production was modelled using Box-Behnken design (BBD) and artificial neural network (ANN), in the variables range of ultrasonication (US) time (20–40 min), CuO nanocatalyst load (1–3 wt%), and the methanol to pre-treated PTO molar ratio (10:1–30:1). Statistical analysis proved that the ANN modelling was better than BBD. Optimal yield of 97.82% obtained using Genetic Algorithm (GA) at US time: 35.36 min, CuO catalyst load: 2.07 wt%, and the molar ratio: 29.87:1. Comparison with previous studies proved that ultrasonication significantly reduced the CuO nanocatalyst load, and increased the molar ratio and improved the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.