Abstract
Incorporating plasmonic nanocrystals (NCs) into solid-state electronics is an important step toward realizing nanophotonic devices. However, only a few noble metal-based systems can directly precipitate plasmonic NCs in a solid transparent medium. In contrast, plasmonic metal oxide NCs can exhibit a plasmonic response at infrared energies that noble metal-based systems cannot reach due to their high carrier concentration. Here we demonstrate the precipitation of bismuth-doped ZnO (BZO) NCs in an aluminosilicate glass matrix, demonstrating a robust near-infrared (NIR)-localized surface plasmon resonance. Benefited from the strong resonant absorption by the plasmonic BZO NCs, these glass ceramics (GCs) exhibit enhanced ultrafast nonlinear optical (NLO) response across the NIR optical communication bands, which might be promising for applications such as optical limiting, optical switching, optical modulation, and NIR-nanophotonic devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have