Abstract

Green leaf volatiles (GLVs) play a vital role in enhancing herbivore-associated defense responses, but the mechanism by which they precisely regulate such responses is not well understood. (Z)-3-Hexenol (z3HOL), an important component of GLVs, effectively activates the defense of tea plants (Camellia sinensis) against a tea geometrid (TG) Ectropis obliqua Prout. To elucidate the molecular mechanisms of defense activation by z3HOL, RNA-Sequencing was employed to investigate the effect of z3HOL on transcriptome responses to TG in tea plants. A total of 318 upregulated genes were identified, and expression of 10 unigenes was validated by quantitative real-time PCR. Among these 318 upregulated genes, 56 were defense-related, including 6 key enzyme genes in jasmonic acid, and ethylene biosynthesis, 24 signal transduction genes, and 12 insect-responsive transcription factors. Most of the defense-related genes are induced by JA, TG, or wounding treatments, suggesting that JA signaling plays a vital role in z3HOL-induced tea defense against TG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.