Abstract

The Cu[Formula: see text]Hg[Formula: see text]Se (x = 0, 0.05, 0.10 and 0.15) nanopowders were fabricated using the hydrothermal synthesis, and then hot-pressed into bulk alloys. The effects of Hg doping on the thermoelectric (TE) properties of Cu2Se were investigated. The electrical resistivities of all the doped samples are lower than that of the nondoped sample due to the induced cation vacancies. For the x = 0.10 and x = 0.15 samples, Seebeck coefficients increase slightly compared with the nondoped sample at higher temperature. Except for the sample of x = 0.05, the thermal conductivities of x = 0.10 and x = 0.15 samples are substantially lower than that of the x = 0.00 sample. As an overall result, the maximum value of ZT, which is the dimensionless TE figure of merit, reaches 1.50 at 600[Formula: see text]C for the x = 0.10 sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.